12,364 research outputs found

    Extended Palatini action for general relativity and the natural emergence of the cosmological constant

    Full text link
    In the Palatini action of general relativity the connection and the metric are treated as independent dynamical variables. Instead of assuming a relation between these quantities, the desired relation between them is derived through the Euler-Lagrange equations of the Palatini action. In this manuscript we construct an extended Palatini action, where we do not assume any a priori relationship between the connection, the covariant metric tensor, and the contravariant metric tensor. Instead we treat these three quantities as independent dynamical variables. We show that this action reproduces the standard Einstein field equations depending on a single metric tensor. We further show that in this formulation the cosmological constant has an additional theoretical significance. Normally the cosmological constant is added to the Einstein field equations for the purpose of having general relativity be consistent with cosmological observations. In the formulation presented here, the nonvanishing cosmological constant also ensures the self-consistency of the theory.Comment: in the revised version the original scalar matter action is replaced with a general matter actio

    Fabrication of titanium multi-wall Thermal Protection System (TPS) test panel arrays

    Get PDF
    Several arrays were designed and tested. Tests included vibrational and acoustical tests, radiant heating tests, and thermal conductivity tests. A feasible manufacturing technique was established for producing the protection system panels

    Re-design and fabrication of titanium multi-wall Thermal Protection System (TPS) test panels

    Get PDF
    The Titanium Multi-wall Thermal Protection System (TIPS) panel was re-designed to incorporate Ti-6-2-4-2 outer sheets for the hot surface, ninety degree side closures for ease of construction and through panel fastness for ease of panel removal. Thermal and structural tests were performed to verify the design. Twenty-five panels were fabricated and delivered to NASA for evaluation at Langley Research Center and Johnson Space Center

    On the Impact of Fair Best Response Dynamics

    Get PDF
    In this work we completely characterize how the frequency with which each player participates in the game dynamics affects the possibility of reaching efficient states, i.e., states with an approximation ratio within a constant factor from the price of anarchy, within a polynomially bounded number of best responses. We focus on the well known class of congestion games and we show that, if each player is allowed to play at least once and at most β\beta times any TT best responses, states with approximation ratio O(β)O(\beta) times the price of anarchy are reached after TloglognT \lceil \log \log n \rceil best responses, and that such a bound is essentially tight also after exponentially many ones. One important consequence of our result is that the fairness among players is a necessary and sufficient condition for guaranteeing a fast convergence to efficient states. This answers the important question of the maximum order of β\beta needed to fast obtain efficient states, left open by [9,10] and [3], in which fast convergence for constant β\beta and very slow convergence for β=O(n)\beta=O(n) have been shown, respectively. Finally, we show that the structure of the game implicitly affects its performances. In particular, we show that in the symmetric setting, in which all players share the same set of strategies, the game always converges to an efficient state after a polynomial number of best responses, regardless of the frequency each player moves with

    Thermal inactivation of Byssochlamys nivea in pineapple nectar combined with preliminary high pressure treatments

    Get PDF
    Byssochlamys nivea is a thermal resistant filamentous fungi and potential micotoxin producer. Recent studies have verified the presence of ascospores of such microorganism in samples of pineapple nectars. Although the majority of filamentous fungi have limited heat resistance and are easily destroyed by heat, Byssochlamys nivea ascospores have shown high thermal resistance. The aim of this work was to evaluate the application of linear and Weibull models on thermal inactivation (70, 80 and 90ºC) of Byssochlamys nivea ascospores in pineapple nectar after pretreatment with high pressure (550MPa or 650MPa during 15min). Following the treatments, survival curves were built up for each processing temperature and adjusted for both models. It was observed that survival curves at 90°C after high pressure pretreatment at 550 MPa/15 min did not fit well to linear and Weibull models. For all the other treatments, the Weibull model presented a better fit. At 90ºC without pressure treatment, the Weibull model also showed a better adjustment, having a larger R2 and a smaller RMSE. Regarding the process effectiveness, a 5-log reduction (t5), as recommended for pasteurization, was only achieved for Byssochlamys nivea ascospores presented in pineapple nectar at 90ºC/10.7 min with previous high pressure treatment of 650 MPa for 15 min. Considering the high intensity and energy demanding process with possibly product damage, other preventive and alternative treatments are being investigated

    The Price of Anarchy for Selfish Ring Routing is Two

    Full text link
    We analyze the network congestion game with atomic players, asymmetric strategies, and the maximum latency among all players as social cost. This important social cost function is much less understood than the average latency. We show that the price of anarchy is at most two, when the network is a ring and the link latencies are linear. Our bound is tight. This is the first sharp bound for the maximum latency objective.Comment: Full version of WINE 2012 paper, 24 page

    Air hydrodynamics of the ultrafast laser-triggered spark gap

    Full text link
    We present space and time resolved measurements of the air hydrodynamics induced by ultrafast laser pulse excitation of the air gap between two electrodes at high potential difference. We explore both plasma-based and plasma-free gap excitation. The former uses the plasma left in the wake of femtosecond filamentation, while the latter exploits air heating by multiple-pulse resonant excitation of quantum molecular wavepackets. We find that the cumulative electrode-driven air density depression channel initiated by the laser plays the dominant role in the gap evolution leading to breakdown

    Oscillation regimes of a solid-state ring laser with active beat note stabilization : from a chaotic device to a ring laser gyroscope

    Full text link
    We report experimental and theoretical study of a rotating diode-pumped Nd-YAG ring laser with active beat note stabilization. Our experimental setup is described in the usual Maxwell-Bloch formalism. We analytically derive a stability condition and some frequency response characteristics for the solid-state ring laser gyroscope, illustrating the important role of mode coupling effects on the dynamics of such a device. Experimental data are presented and compared with the theory on the basis of realistic laser parameters, showing a very good agreement. Our results illustrate the duality between the very rich non linear dynamics of the diode-pumped solid-state ring laser (including chaotic behavior) and the possibility to obtain a very stable beat note, resulting in a potentially new kind of rotation sensor
    corecore